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and

T.L. Cline
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ABSTRACT

A quiet-time component of interplanetary electrons having

energies above solar wind energies and below those charac-

terized as cosmic radiation is observed. Its energy spectrum

generally falls with energy from 18 keV to 1. 8 MeV, but shows

a feature in the 100-300 keV range. The observed temporal

variations of the intensity suggest that the 18-100 keV por-

tion is solar and the 0.3 - 1. 8 MeV portion is galactic in ori-

gin. Solar and terrestrial neutron-decay electrons appear

inadequate to explain the 100-300 keV feature.

In this letter we report the first observations of a quiet-time inter-

planetary electron component covering the energy range from 18 keV up to

the previously reported cosmic ray electron measurements above 2 MeV.

With these observations the entire quiescent interplanetary electron spectrum

12
from thermal energies to 10 eV has now been measured. The intensity

of these quiet-time electrons is 3 to 5 orders of magnitudes below pre-

viously measured intensities in this energy region observed during times
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of enhanced interplanetary activity. The features of this quiet-time com-

dJponent include (a) a power-law energy spectrum dE A E- with index y

2. 3 between 18 and 100 keV at quietest times; (b) a spectral feature in

the 100-300 keV region that may possibly be due to a neutron decay com-

ponent; (c) another power-law spectrum with index y = 3. 2 between 0.3 and

1.8 MeV; (d) temporal variations of a factor of 3 or more for the 18-100

keV electron intensity over time periods of several days and essentially no

temporal variations of the component above 100 keV.

INSTRU MENTA TION

The measurements come from two independent experiments carried on

the NASA IMP-6 spacecraft. This scientific satellite was launched into a

high apogee equatorial orbit from Cape Kennedy on March 13, 1971. Initial

orbit parameters are: apogee, 211, 251 km; perigee, 6,'729 km; sun-earth-

apogee angle projected on the ecliptic plane, 14. 80. All the observations

reported here are from times when the spacecraft was well outside the

earth's magnetosphere.

Electron spectrum measurements from the University of California

experiment come from a passively cooled (4- 550C) solid state detector

telescope which is open to space without any foil covering. The telescope,

shown in Figure la, consists of three elements. The first measures the

energy of stopping particles and the third provides anticoincidence against

penetrating particles. Electrons from 18 keV to ~500 keV are measured.

To take advantage of the high inherent energy resolution (48 keV fwhm)

of the cooled surface barrier detectors, the output below 500 keV is pulse

height analyzed into 64 channels by use of a computer aboard the space-

craft. The IMP-6 UCal detector is not capable of unambiguously sepa-

rating electron fluxes from proton fluxes below 200 keV in energy. However



3.

observations from the Apollo 15 Particles and Fields Subsatellite, which

can separate proton and electron fluxes, show that at quiet times the

electron flux dominates the proton flux by about a factor of ten in the

energy range below 200 keV. 1,2 Background due to cosmic ray nucleons

penetrating the front detectors without triggering the back anticoincidence

detector has been computed and subtracted from the observed fluxes.

These corrections are negligible below 100 keV. Calibration of the sys-

tem is provided by electronically switching the gain of the detector sys-

tem down by a fixed factor in order to view an on-board radioactive

source. Confirmation of the calibration is obtained from the cutoff

energy for electrons entering the anticoincidence detector, which depends

only on the detector thickness.

The Goddard Space Flight Center (GSFC) detector (Figure lb) incor-

porates a stilbene crystal, with a CsI (TI) anticoincidence, in which stop-

ping particles have both their energy loss and rate of ionization measured

by observing the pulse height and pulse shape. In-flight measurements

indicate complete proton vs. electron separation for all electron energies

above 50 keV. The pulse decay in CsI (TI) is more than an order of

magnitude slower than either lightly or heavily ionizing particles in

stilbene, so that it was possible to view the entire arrangement with

one photomultiplier tube. A second photomultiplier tube with a large

CsI (T1) crystal was incorporated in a priority-coincidence system, in

order to determine the positron to electron ratio as a function of energy,

by observing the incidence of annihilation radiation accompanying stopped

electrons. This measurement requires a greatly improved statistical

study and its results will be reported at a later time. Another photo-

tube views a separate stilbene crystal system, symmetrically placed

with respect to the gamma-ray spectrometer but closed off with
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anticoincidence scintillator. This is used to evaluat e the local or space-

craft-induced background of secondary gamma rays and cascade showers

that produce Compton electrons, and thus distort the observed spectrum

of primary interplanetary electrons. This background was found to be

small compared to the observed quiet time spectrum.' The proper opera-

tion of the system was further tested by studying the characteristics of

electron and proton events from several solar flares which occurred in

early and mid-1971. The electron measurements were calibrated by the

use of radioactive sources before launch, and were corrected for back-

ground events observed in the ionization versus energy plots of data

taken outside the magnetosphere. The resulting spectrum of quiet-time

electrons is believed to contain systematic errors which do not exceed

25 to 30 percent. These errors and the statistical errors are included

in the GSFC points of Figure 2.

OBSERVATIONS

The electron spectra from both experiments are shown in Figure 2.

The observations are taken at the quietest time during several months

observing period. This low intensity level has been observed on several

occasions of a few days duration. Large temporal variations of the

fluxes below 100 keV occur over a time scale of several days. At more

disturbed times the flux below 100 keV can be a factor of 3 or more

above the quietest levels, even when all solar flare particle events have

been eliminated from the data. At energies above 100 keV the fluxes do

not vary substantially (<25% over several months) in the absence of solar

events. The excellent agreement of the fluxes measured by the GSFC

and the IMP-6 UCal experiments below 500 keV should be noted. From

0. 3 to 1. 8 MeV the spectrum fits a power law, dJ 1. 55 X 105 E 3 2
dE

(cm2 ster sec keV)- where E is in keY. Between 18 and 100 keV the
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dJ 2 -2. 3 2
spectrum at the quietest times is dE = 3 X 10 E (cm sec ster

keV) . Each experiment independently observed a feature in the 100 to

300 keV region which prevented the description of the spectrum terms of

a single power law. Since the evidence for this feature is in surpris-

ingly good mutual agreement, we view the possibility that it is due to

systematic errors in detector calibration as highly unlikely. Further-

more, this structure, if viewed as a bump superimposed on a smooth

spectrum, appears at an appropriate energy interval for neutron-decay

electrons. The beta-decay spectrum expected for decay of neutrons at

rest peaks at about 280 keV and ends at about 783 keV. The observed

spectrum both peaks and disappears into the continum at somewhat lower

energies but nonetheless is qualitatively suggestive of a neutron decay

component.

The interplanetary quiet-time electron spectrum over all avail-

able energies is compiled in Figure 3. Solar wind electron data merg-

ing into the theoretical 1. 5 X 105 K Maxwellian (dashed line) are shown

3
in the 10 to 300 eV region as solid dots and similar but more recent

4data up to 1 keV as open dots. In the energy range 0. 5 keV to 15 keV

the data shown are.from the Apollo 15 Subsatellite. These data are

not strictly quiet time as indicated by the measurements above 20 keV

(diamonds) taken in the same period. In the 18 keV to 1. 8 MeV

energy-region, the results presented in this letter are the only known,

5
quiet-time data, except for two points in the several hundred keV region

which are a decade lower in intensity. We note that the value of the

positron to electron ratio in this energy range using the Cline and Hones 6

e+
values for the positron intensity, is e- + e +- 20% for the flux levels

reported here, compared to ~100% for the values reported in reference 5.
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At the high energy end the reported spectrum joins smoothly onto

the OGO-5 and IMP-4 spectra, shown here as squares and crosses,

7, 8
respectively, in the 2 to 20 MeV region. A compilation of a variety

of high-energy electron data are shown in the 20 MeV to 1 TeV region

in order to provide a complete picture of the known cosmic-ray compo-

nent.

DISCUSSION

The previously reported cosmic ray spectrum in the range 2-20 MeV

fit a power law spectrum with index 1. 75, substantially different from the

3.2 measured here for electrons from 0. 3 to 1. 8 MeV. The lack of tem-

poral variations in the 0. 3-1. 8 MeV intensity over the first few months of

observation is evidence against a solar origin for these electrons. As

shown in a review of over half a solar cycle of 2-20 MeV electron obser-

vations 9 it is possible to go through several months with no time varia-

tions, such as in mid-1968, as contrasted with large variations of a fac-

tor of ~ 5, as in late 1967. Only a thorough and detailed study of the

time variations of the 0. 3 to 1. 8 MeV component over a protracted period

will show whether its behavior is like that of the >2 MeV component. At

present, the absence of observed time variations is consistent with a

cosmic-ray identification of the 0. 3 to 1. 8 MeV component although the

marked change in spectral index from that for the 2-20 MeV component

suggests that a different galactic origin or different form of modulation

may be involved.

By the same argument, the presence of temporal variations in the

electron fluxes between 18 and 100 keV indicate that these fluxes are most

likely of solar origin. Anderson et al., find that this component extends

to energies of < 5 keV with a smooth steepening of the spectrum to Y ¥ 3. 5
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at low energies. Below -2 keV the character of the electron flux changes

abruptly, both steepening in spectral slope to y ,5 and changing in angu-

lar distribution from essentially isotropic to highly anisotropic. Appa-

rently these fluxes are part of the solar wind plasma electron component.

The fluxes from 5-100 keV may be an extension of the solar wind to higher

energies, 10 or they may be a separate component related to solar active

11
regions and storms of solar radio bursts at the sun. The relationship

of the solar wind plasma to active regions on the sun is not clear at pre-

sent. Further studies of the temporal variations of the 5-100 keV elec-

tron component are needed to clarify its origin.

The spectral feature between 100 and 300 keV presents the most

puzzling aspect of the results reported here. The degree of anisotropy

of the electron intensity in the 100 to 300 keV region is small, with an

upper limit of aZ percent. If these were solar or terrestrial neutron-

decay electrons, they are subject to a sufficient degree of diffusion to ran-

domize their trajectories. The total area under the bump in the spectrum,

over and above the continuum component, is about 0.8 electron cm

-1 -1
sec ster . Using the spectrum for cosmic ray neutron leakage flux

at the top of the earth's atmosphere given by Lingenfelter we have cal-

culated the rate of production of electrons from the decay of these neutrons

outside the earth's magnetosphere as a function of distance. The total

dn
integrated neutron-decay electron production from this source is dt <

10 1 5 (cm3 sec) - 1 at 16 earth radii (RE) and 40. 5 X 10 1 5 (cm3sec)
-

1 at

32 R
E

distance from the earth. Essentially all of the electrons come from

decay of <1 MeV energy neutrons. An absolute upper limit to the lifetime

of these electrons near the earth is the time it takes the solar wind to con-

vect these electrons out of the region near the earth where they are pro-

duced. If the propagation of the electrons is dominated by diffusion as
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appears likely from studies of impulsive solar electron events, then the

electrons will escape much more rapidly. The effective scale size of

the neutron-decay region is certainly <100 R
E

so the maximum lifetime

is T < 100 R E 3
max V Z2 X10 sec., where V = solar wind velocity isVsW SW

SW

taken as 320 km sec 1

The maximum possible density of terrestrial neutron-decay electron

is then n T'max dt < 2 X 10 cm , and the maximum possible flux

v< 4 x10-3 2 -IJ = 4 (cm sec. ster. ) . This is more than two orders of
4-a4n~~~~2 -1

magnitude below the observed excess flux of 0. 8 (cm sec ster) , so that

a terrestrial neutron-decay origin for these electrons can be ruled out.

Assuming a solar origin for these electrons, i. e. as the decay of

low energy neutrons near the sun, we can deduce an upper limit to the

outward solar low energy neutron flux. From studies of impulsive solar

electron events it is clear that the propagation of these electrons is domn-

inated by diffusion rather than convection at these energies, with diffusion

c22 2 -1coefficients of K k 10 cm sec For continuous emission from the sun

13 dn fthe steady state equation for the particle density n becomes K =
dr 4wr2,

where · = total rate of emission by the sun, and r = distance, and K the

diffusion coefficient. If we take K = K r then the solution is n = CTK '
o

22 2 -1 nv 2 -l27Putting K c sec at 1 A. U. and using J = 8 (cm sec ster)

we obtain = 2 X 10 neutrons sec as the rate of emission of neutron-

decay electrons from the whole sun. 14 This compares with an upper limit

of 6 X 1024 neutrons sec-1 calculated by Ramaty, Cline and Fisk, 15 who

extrapolated down in energy from upper limits to the 20-200 MeV neutron

flux observed at 1 A. U.

An alternative possibility is that the 100-300 keV electrons enter the

solar system from the nearby galactic medium. The lack of temporal
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variations over the first few months of data for the 100-300 keV electrons

is consistent with the behavior of the 0. 3-1. 8 MeV and 2-20 MeV com-

ponents which are presumably galactic in origin.
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ON THE ORIGIN OF 200 KEV INTERPLANETARY ELECTRONS

R. Ramaty, T. L. Cline, and L. A. Fisk

Laboratory for High Energy Astrophysics

NASA/Goddard Space Flight Center, Greenbelt, Maryland 20771

A spectral feature at - 200 keV in the recently observed intensity of

interplanetary electrons is examined as to its possible solar, interplanetary

or galactic origin.

Lin et al. (1 ) have reported the first quiet-time observations of the inter-

planetary electron spectrum covering the range 20 keV to 2 MeV. Their results

consist of two independent measurements which overlap in the 50 to 400 keV

region, both of which indicate the existence of a distinct spectral feature at

about 200 keV. If this feature is interpreted as a bump or excess above a

power-law background, it consists of about 0.8 electrons cm 2sec lsr
-
1 over

and above the continuum component. It may instead be considered as a shelf or

cut-off between two approximate power laws. In the present Letter we examine

the suggestion(
1
) that this spectral feature could be due to a neutron-decay

electron component of either solar or galactic origin, and we also consider

alternative source models, including production by nearby galactic objects or

acceleration at the outer boundary of the solar system.

We consider first the question of neutron production. Earth-albedo

neutrons have been shown( l) to be inadequate to account for the electron excess

by more than a factor of 100. If the - 200 keV electrons result from the decay

of solar neutrons and if these electrons diffuse from the sun to earth, Lin

et al. ( ') estimate that the necessary neutron source at the sun is about

2 x 10 neutrons/sec. These neutrons cannot result from thermonuclear

reactions in the solar corona, since as estimated by Audouze( 2
) this mechanism
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-24 -3 -l
produces less than - 2 x 10 neutrons cm sec , a value which leads to a

negligible total neutron yield for any assumed production volume at the sun.

The most likely source of solar neutrons would instead be high-energy nuclear

reactions of energetic protons, alpha particles and CNO nuclei with the ambient

hydrogen, helium and CNO in the solar atmosphere. The production of neutrons

(3)
in solar flares by these processes has been considered in detail( . Using

the techniques of reference 3, we have calculated the quiet-time production of

neutrons at the sun, and we have compared the resultant steady state neutron

flux at earth with a new upper limit on high-energy solar neutrons(4). Accord-

ing to this measurement, the background neutron flux is - 10
- 3

neutrons

cm-2 sec-1 and the upper limit on solar neutrons is - 3 x 10 neutrons cm-2sec - 1

(Leavitt, private communication). We summarize our results in Table 1. Here

F is the differential energetic particle spectral index; Qn is the total solar

neutron production normalized to an ambient density of 1 hydrogen atom (or

proton) cm
-
3 and 1 accelerated proton of energy greater than 30 MeV; and cn

(20-200 MeV) is the calculated steady state flux of 20 to 200 MeV neutrons at

earth. The results of Table 1 are based on an energetic particle composition

which is taken to be the same as that of the ambient material, or H:He:CNO =

1:0.08:0.002(5 )

It should be noted that the results of Table 1 are only weakly dependent

on the spectral index F. This relative constancy is of considerable importance

since both the spectra and intensities of accelerated particles stored at the

sun during quiet-times are unknown. Since observations of solar particles at

earth (J. Wang and M. Van Hollebeke, private communication) indicate average

spectral indexes of about 3 to 4 (with important variations with time and

composition), and because of the relative insensitivity of the results in
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Table 1 to F, the range 2 < r < 5 should cover all cases of interest. Note

also that the ratios pn/Qn to be used are independent of the ambient density

and the total number of accelerated particles. The upper limit on(20-2 0 0 MeV)

< 3 x 10
-
4 neutrons cm-2sec

-
1 then implies that the total neutron production

at the sun should be less than 3.5 x 1024 to 5.7 x 1024 neutrons sec
-
l for F

ranging from 2 to 5. These values are lower by a factor of 350 to 600 than the

production rate of solar neutrons estimated by Lin et alo(1 ) as necessary to

account for the observed electron excess at - 200 keV. The discrepancy factor

between the required neutron production and calculated upper limits may be

decreased by about 10 to 20 by replacing diffusive propagation of solar

electrons, which Lin et alo(1 ) considered, with the maximum trapping in the

inner solar system allowed by the expanding solar wind. (There is, however,

no indication that trapping does in fact take place.) The maximum trapping

time is of the order R/V, where R is the radius of the trapping volume and V

is the solar wind speed. Since low-energy solar flare electrons are observed

to undergo little scattering during propagation from the sun( 6 ), the trapping

boundary has to lie outside one AoUo. The factor of 10 to 20 is obtained by

using R = 3 x 1013 cm and V = 4 x 107 cm sec
-
1, a set of values which yields

25 -I
a required neutron production rate of 7 x 10 neutrons sec 1, as opposed to

the value of 2 x 1027 neutrons sec-
1

obtained by Lin et al. We conclude

that electrons from the decay of solar neutrons can produce at most 10% of the

observed electron excess at 200 keV if we use the model of maximum trapping,

but more likely they produce less than 0.3% if we use the diffusion model

discussed by Lin et al.(

For the calculation of neutron production in interstellar space we use the

same techniques as for solar neutrons. We consider the limiting cases of the
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cosmic ray spectrum: an intensity as observed near earth with a reasonable or

minimum amount of solar demodulation, and a hypothetical low-energy component

which increases with decreasing energy. We find that if the cosmic ray energy

density in interstellar space does not exceed the maximum energy density as

estimated from arguments based on the stability of the galactic disk, cosmic-

ray produced neutrons can only account for - 0.2% of the required electron

excess at - 200 keV. Because of this negative result, we shall not give the

details of the derivation.

One final remark on the neutron source model concerns the shape of the

expected electrcn differential spectrum. This is illustrated in Fig. 1 for

neutrons at rest, along with the observed data and a X 75 keV Maxwellian

distribution, for comparison. As can be seen, the theoretical neutron decay

curve does not have a shape which peaks exactly in the same energy region as

the bump in the observed spectrum, but at a somewhat higher energy. This,

however, is by itself not necessarily an argument against the neutron origin

model, since the electrons may lose energy during their propagation; for

example, if the neutrons are produced at the sun, adiabatic deceleration in

the expanding solar wind( 7 ) could yield the required energy loss. Nonetheless,

since both solar and cosmic-ray produced neutrons are inadequate to account for

the observed electron excess at - 200 keV, and because there are no other known

astronomical sources of free neutrons, a neutron-decay origin of these electrons

should probably be abandoned.

As is indicated in the figure, the observed spectral feature at 200 keV

may be fitted instead by a Maxwellian distribution of effective temperature

kT P 75 keV. An astronomical object which might conceivably produce such an

electron spectrum at earth is the x.ray source Sco X-1. The distance to
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Sco X-1 has been directly estimated from its proper motion as - 170 pc (8)

although other estimates( 9 ) indicate distances ranging from about 300 to

1000 pc. This source possibility should be at least examined in view of the

coincidence between the observed interplanetary electron spectrum and the x-

and gamma-ray observations of Sco X-1(
10 )

. The x-ray emission consists of a

thermal component with exponential spectrum of characteristic temperature

kT - 5 keV, and another hard component which dominates the emission at

energies greater than about 50 keV. The differential energy flux of the hard

component may be characterized either by an exponential with 100 keV < kT <

370 keV or by a power law with spectral index 0.8 + 0.3 with an unknown high

energy cutoff(l1
) . At a distance of.170 pc the luminosity at photon energies

of 40 to 350 keV is 1.3 x 1034 ergs/sec( 1 0 ) while the luminosity of the

thermal component at the same distance is - 2 x 1036 ergs/sec . If the hard

component is interpreted as bremsstrahlung of 40 to 350 keV electrons, it

indicates the presence of such electrons at Sco X-1.

Let us assume now that some fraction of the < 300 keV electrons are

ejected into interstellar space and that these electrons uniformly fill up a

sphere around Sco X-1 with a radius of at least 200 pc, arbitrarily chosen so

that the earth is inside this region. If the production rate of < 300 keV

electrons at Sco X-1 has been constant over at least- 2 x 104 years, a time

equal to the lifetime against Coulomb collisions of " 200 keV electrons in

the interstellar gas with average density of 1 cm , an equilibrium intensity

of 0.8 cm 2 sec -lsr
-
1 in the spherical cavity of radius ' 200 pc requires an

electron energy output at Sco X-1 of - 1.2 x 1035 ergs sec - 1 This value is

larger than the observed luminosity of the hard component, but is much smaller

than both the thermal luminosity of Sco X-1 and the power that would have to
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be supplied to the 40 to 350 keV electrons if x-rays in this energy range were

produced by non-thermal bremsstrahlung. (Since the radiation yield of 350 keV

-4 37 -1
electrons is - 4 x 10 , this power is - 3 x 10 ergs sec .) Provided that

the residual solar modulation at - 200 keV is not exceedingly large, Sco X-1

is energetically capable of producing the observed electron excess at earth.

However, it is even possible that particles with small gyroradii are not

(11)
modulated at all ; in this case, when ionization losses are taken into

account, the observed hard x-ray spectrum of Sco X-lwould be consistent with

the observed electron excess at - 200 keV.

Consider now an alternative interpretation to the observed electron

spectrum. Figure 2 illustrates a model in which, instead of a bump or excess,

the spectral feature at - 200 keV consists of a low-energy cutoff to a single

power law with spectral index - 3, between about 200 keV and 2 MeV. This

power-law interpretation may even provide a somewhat better fit to the data

than does the bump or excess model. We consider here several non-solar possi-

bilities for the source of electrons above - 100 keV since these electrons

show none of the marked time variations characteristic of particles accelerated

at the sun as do those below - 100 keV

(

1

)

.

If the electrons are galactic in origin, the cutoff could be produced

by collision losses which the electrons suffer during propagation through

the interstellar medium. To have a power law with a cutoff at - 200 keV, the

age of the source of the electrons must be - 2 x 104 years. The supernova

Vela X would be a reasonable candidate for this source since the age of the

remnant of this supernova is about 1 to 2 x 104 years. Problems of charged

particle propagation from Vela X have been previously discussed; it was shown

that the age and distance to this object are consistent with it being a
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prolific source of cosmic rays'over a wide energy range both in the Gum

(12)
Nebula and near earth .We should also consider that the cutoff may be the

result of solar modulation, produced perhaps by scattering by magnetic field

irregularities in the inner solar system.

It is also interesting to note that the spiral nature of the interplanetary

magnetic field may result in a cutoff below which low-energy electrons (and

nuclei) can not penetrate into the solar cavity. If the interplanetary field

continues to execute the Archimedes spiral pattern out to, e.g. 50 A.U., then

at this distance it will lie in essentially the azimuthal direction, making an

-1
acute angle * = tan (50) with the heliocentric radial direction. Let us assume

that the particles propagate freely along the mean field, but that there is

sufficient diffusion due to field-line random walk in the polar direction to

eliminate any gradients set up by the interplanetary electric field. (The

diffusion coefficient in the polar direction, due to the random walk of field

lines in the photosphere, supposedly increases in proportion to heliocentric

distance(l3).) Then, just as in discussions of the diurnal anisotropy( ), to

maintain a steady-state, i.e. no net radial streaming, the streaming velocity

of particles along the mean field, u:,, must be u,, V tan*. With V = 400

km/sec and tan ' = 50, u,, = 2 x 109 cm/sec. Clearly, particles with a velocity

parallel to the mean field that is less than u,, cannot penetrate into the

solar cavity. However, this implies only that galactic electrons with energies

less than a few keV (or protons with energies less than a few MeV) are excluded.

In fact, even higher energy particles should have difficulty in penetrating into

the solar cavity, since, unless their velocity is much larger than u,, , the

particle distribution function will be highly anisotropic and will be subject,

presumably, to streaming instabilities( 5 ). These instabilities give rise to

magnetic field irregularities which scatter and thus exclude the particles.
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In order to produce the observed cutoff at - 150 keV, we require that only

electrons with velocity v > 10 u,, (corresponding to an anisotropy < 30%) may

stream freely along the field. Note, however, that we do not treat the

possibility that low energy electrons seen in the ecliptic plane might enter

over the solar poles where the field does not execute a tight spiral pattern.

Finally, we mention that a solar wind shock transition at the boundary

of the heliosphere might be an efficient accelerator of low energy particles

giving rise to the electrons in the energy region of the observed spectral

feature. (The cutoff could then be produced by the above modulation mechanism).

For particles to be accelerated efficiently by a shock they must presumably

remain in contact with the shock front for an extended time. One simple way

to accomplish this is to have the magnetic field nearly aligned with the

shock front, which may indeed be the situation at the shock at the heliosphere

boundary.

In summary, we have discussed two interpretations of a feature in

the recently observed spectrum of interplanetary electrons in the vicinity

of - 200 keV. This spectral feature could be interpreted as a oump or

excess above a continuum or as a low energy cutoff to a power .aw; the data

being insufficient to uniquely distinguish between these possibilities. We

have shown that the electron excess of - 0.8 electrons cm'2sec-lsr- 1 at

200 keV cannot result from neutron decay, because neutron production in

both the solar atmosphere and in interstellar space is insufficient to account

for the observed electron intensity and no other known astronomical sources

of free neutrons are available. A model in which the bump at - 200 keV

is produced by the nearby X-ray object Sco X-1 is also considered and is found

not to be inconsistent with the data.
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As an alternative interpretation of the spectrum of interplanetary

electrons in the 100 keV to 2 MeV region, we have proposed that they are of

nonsolar origin and that their spectrum can be fitted by a single power law

with a low-energy cutoff. This cutoff could be produced by either of at least

two possible mechanisms: collision losses in interstellar space or propagation

along an interplanetary magnetic field which is essentially perpendicular

to the heliocentric radial direction at large distances from the Sun. The

power law itself could be due to a young galactic source (e.g. Vela X) or

acceleration at the shock transition at the boundary of the heliosphere.
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TABLE 1o Neutron fluxes at earth and total
production rates at the Sun.

r Cpn(2 0 -2 0 0 MeV) (c-2 neutrons
~(cm )Qn( sec )

Qn

2 .86 x 1028 1.3 x 10 1 6

3 .85 x 10-28 .84 x 1016

4 .67 x 1028 .72 x 10-16

5 .53 x 10
- 2 8

.7 x 10 16

Figure Captions

1o Electron spectra in the vicinity of the spectral feature at - 200 keV.

Data points - observed spectrum(l); solid line - Maxwell-Bolzmann

distribution; dashed line - neutron-decay electrons, Both calculated

curves are normalized to the data at 100 keV.

2. Quiet-time electron spectra from a few tens of keV to about 20 MeV(1)

Solid line - proposed fit to the 100 keV to 2 MeV data.
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